We have input x and output y with the relationship: 假設有一未知函數 F (i.e. 電子線路),輸入X 後會得到 輸出Y: x --> [ f(x) ] --> y Given y, if we want to find x, we need f^-1(y) so that 如果有逆函數 F^-1 ,就可以從目標輸出 Y 找到需要的 輸入 X: y --> [ f^-1(y) ] --> x Another approach: for each xi among all possible x's, check if f(xi) equals to y, then answer is xi, and return; otherwise, next xi. ADC uses the same approach (internally has a DAC) 另一途徑,是輪流測試不同的輸入,直至得到目標輸出。例如有些類比信號的量化(ADC)便是用這方法。 逐一測試 由 0 至 255 (8-bit) 輸入到內置DAC ,得出的類比電壓 與 目標電壓 作比較。當比較差是零或少於所需誤差值,該測試輸入值便是答案。
這是一個模擬細胞活動的電腦編程遊戲。我加上不同顏色使其更易明白: 黑色、空格 紅色、新生兒出現在有3個鄰居的空格 綠色、有2或3個鄰居的細胞 藍色、細胞剛離世,因為太孤獨或太擁擠(少於2個或多於3個鄰居)。 不被計算為鄰居 。 (你可能已經留意到,選色附合 RGB 在彩虹的順序)😁 The game of go is a well-known computer science game which uses simple rules to produce complex cell-like behaviors. What makes it easier to understand? Coloring the cells! BLACK - empty spots RED - new borns were at empty spots with exactly 3 neighbours. GREEN - existing cells with 2 or 3 neighbours live on BLUE - cells just dead due to loneliness or starved from crowdiness, less than 2 or more than 3 neighbors. Think of BLUEs non-exist . (you might have already noticed that the colours, RGB, are selected for the life phases to match the same sequences as on a rainbow 🌈 ) the 'gun' Gosper's Glider Gun is an interesting pattern, each cycle has 60 frames, while the glider ...
留言
發佈留言